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ABSTRACT The transition mechanism in a plane wake was investigated by means of

numerical simulations of instability, mode interaction in a spatially developing wake.

The incompressible time-dependent 2 - D Navier-Stokes equations were solved using

finite difference method in the streamwise (z) direction, pseudospectral Fourier method

in y direction, and a third order Runge-Kutta scheme for time advancement. The mean

profiles, intensity of u-fluctuations and energy spectra of numerical results agree well
with experimental measurements. The numerical results show not only the generation

of a pair of alternating vortices in the non-linear region, but also, the gradual distortion
of a double row of vortices in the downstream location and the loss of a deterministic

structure.

1. Introduction
The laminar-turbulent transition in a plane wake, as well as jet flow and separated flow, has

been a very important and fundamental phenomenon to the understanding of the mechanism
of transition of free boundary shear flow. The experimental studies of the transition region

of a two-dimensional wake have been carried out extensively by Sato et. al.[1-4]. Sato &

Onda(2 } reported the instability mode interaction in a plane wake was understood as a non-
linear interaction of each mode -the mutual suppression of amplitude- and generation of new

mode. On the other hand, Zabuskv and Deem[5 ] calculated time developing wakes using finite-

difference method(128 x 128 points} and showed the existence of a double row of elliptical

vortices.
The advancement of fast and large-memory computer has recently led to the use of direct

simulation to predict turbulent flows[6]. Computer simulation and laboratory experiments

offer two complementary approaches in this research. Computer simulations can calculate

directly fundamental flow quantities such as vorticit'y and pressure, which is difficult to measure

accurately in the laboratory. Moreover, numerical simulation allows to study the instantaneous

flow dynamics that are crucial to the understanding of the evolving structure which governs

the transition flows.

The purpose of this investigation is to present the spatially evolving process of vortical

structure in plane wakes oscillated by linear unstable modes. The non-linear region and the

beginning of randomness are studied by means of the statistical analysis of numerical results.

Experimental one component energy spectra show the clear existence of a wave number mode

fanfily as described above. This paper tries to understand the relations between the transition
mechanism as shown by experimental measurements and vortical flow structures which can be

seen from the numerical results.

2. Mathematical formulaton

2.1 Governing field equations
Sato & Kuriki[1] reported the flows in the non-linear region of a plane wake were approx-

imated by two-dimensional motions and the change of wave-form was gradual. In this work,
the two-dimensional coordinate system is used to represent the spatial variation in the fields.

The • coordinate represents the streamwise flow direction. The y coordinate represents the

direction perpendicular to z. The streamwise extent of the computational domain is finite and
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the y extent is infinite in both the positive and negative y directions. The time-dependent
incompressible Navier-Stokes equations:

Ou, OP
- -- + Re-lV2u_ (1)Ot - ei3kujw_ Ox_

(Re =_ Ub°/,./v, b°/: represents the haft width of the inlet laminar wake flow) are solved. The

conservation of mass for the fluid is expressed by the continuity equation:

0ui

o. (2)

2.2 Boundary conditions

A Gaussian profile was chosen for an inlet flow condition, namely, the mean u component
of velocity at the inlet plane is represented by:

u = 1 - 0.692exp(-0.69315y") (3)

The eigenfunction perturbations are invoked in the inlet plane. The unstable eigefuctions of
the shear layer problem for the Gaussian profile given by the Eq.(3) were calculated. The

fundamental mode. first and second subharmonics are superimposed on the velocity profile at
the inlet plane. These perturbations are of the form:

p 1 r
u_ = _ [ffj( z, y)e 'w,t + complex conjugate] (4)

The oscillation amplitude was 3%. A time dependent advection condition of the form:

OUi OUi

8-7 + uo - = o (5)

is invoked for each of the velocity components at the exit plane, where U_ represents the
advection speed of the large-scale structures in the layer. No-stress conditions are employed to
represent the boundary conditions at the free stream. That is,

OU

= o. (6)
2.3 Initial conditions

The Gaussian profile prescribed for the mean u component at the inlet plane is distributed
uniformly at all x locations in the domain at t = 0. This profile is perturbed with eigenfuctions
which oscillate sinusoidally in time, but only at the inlet plane. These initial conditions must

be allowed to wash out before any statistical analysis may be performed on the layer.

3. Numerical formulation

In the present work, the geometry and boundary conditions are such that the finite Fourier
transform may be employed in the y direction. The discrete Fourier transform with the FFT
algorithm provides relatively high accuracy per degree of freedom.

3.1 y direction representations

A mapping is employed to bring the doubly-infinite extent of the y domain into an interval
of finite extent in the computational coordinate, (. That is
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y = (7)

where a is a stretching parameter for the mapping. Derivatives in y-space are transformed to

_-space using the standard chain rule. The procedure is presented in Cain, et. al.[7].

3.2 Time discretization

Third-order Runge-Kutta methods was employed for the time advancement. This scheme

allows the flow of high Reynolds number to be integrated in time with a moderately large time
step without becoming unstable. Moreover, the scheme can be constructed so that only two
words of storage are required per dependent variable.

3.3 Other numerical elements

The finite difference scheme chosen in the streamwise direction was the second-order accu-

rate upwind representation for O/Oz. The second-order, central difference scheme was employed
to represent the 0_/02z terms. The discrete form of the poisson equation for the pressure field
was solved( see Lowery & Reynolds[8]).

4. Results and discussion

Two cases were studied in the present work: the first (Case 1) is a wake flow forced by
three modes; a fundamental mode and its first and second subharmonic. The second (Case
2) is a wake flow forced with a fundamental mode only. In either case, the Reynolds number
was 600. In the streamwise direction (0 _< z _<200) 512 uniformly distributed grid points were
used, 128 grid points were used in the cross-stream direction. In agreement with experimental
observation, the numerical mean profiles show the "overshoot" phenomena in the non-linear

region. The maximum central value of mean flow is Uc = 0.838 at z = 50, which is very close to
the experimental value of 0.84(1]. Figure 1 shows the distribution of the u-fluctuation at several
streamwise locations. The maximum intensity of u-fluctuation is 0.12 at x=25. The fluctuation

intensities peak before z--50. Figure 2 shows the instantaneous vorticity contours for two cases.

The fundamental mode is the dominant growing mode which saturates into a pair of alternating
vortices. Figures 2 (b) and (c) show the flows of the downstream location, 100 <_ z <_ 200. The
distortion of the vortex street in the downstream location can be observed in case l, while case
2 shows an unperturbed vortex street. Moreover, Fig.2 (b) shows the vortex pairing dynamics
around z = 170. The large distortion of the vortical structure increases the intensity of u-
fluctuation near the wake center shown in Fig.1. In case 1, the structure in the pairing region
has various distorted shapes. This is an indication that subharmonics will play a critical role
in generating randomness due to shape distortion. Figure 3 shows the velocity fluctuations of
u at the location of the peak intensity for case 1. Figure 4 shows the energy spectra of these
traces. There exist the resonant higher harmonic components, as well as fundamental, first and
second subharmonic components.

5. Conclusion

Numerical results show the vortical structures and energy spectra in a plane wake. In the
2-D case, the distortion of large-scale structure generates the randomness in the flow field.
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Fig.1 Distributions of u-fluctuation intesity
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Fig.2 Vorticity contours
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Fig.3 Time trace of u-fluctuation
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Fig.4 Energy spectra of u
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